教案为教师开辟了更丰富的教学思路,有助于激发创新的教学方法,教案有助于教师合理安排课堂时间,确保各个环节的顺利进行,下面是一团范文网小编为您分享的分数的应用教案6篇,感谢您的参阅。

分数的应用教案篇1
学材分析
重点:利息和税款的计算
难点:对所涉时关键:懂得利率、保险费率和税率的意义
间的理解
学情分析
学情分析:学生学习了常用百分率、求一个数的百分之几是多少的应用题的基础上进行教学的。为实际应用作好准备。
学习目标
1、能利用百分数的有关实际问题,提高解决实际问题的能力。
2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
导学策略
尝试教学法、练习法
教学准备
幻灯片、小黑板
教师活动
学生活动
一、 谈话导入
师:你收到过压岁钱吗?你是怎样支配的?
(如果学生没有提到银行,则由教师引导揭题)
二、探究新知
1、利息
师:这节课我们一起走进银行,解决银行中与我们有联系的数学问题。
师:你了解银行的一些什么知识?
师:如果陈杰存入银行1000元钱,银行的年利率是0.65%,存一年有多少利息?二年呢?五年呢?
师根据生口答进行板书
师:我们该怎样计算利息?你能用一个公式表示吗?(师板书)
2、利息税
从1999年11月1日起,个人在银行存款所得利息应按20%纳税,这就是利息税。国家将这部分税收用于社会福利事业。
算一算陈杰1年、2年、5年各应缴多少利息税?
3、自学例题
4、巩固练习。
(1)小调查:先让学生做调查,然后思考存两年有多少种存法?估计一下哪种存法的利息多,再实际计算。最后全班交流。
(2)练一练1--3
5、总结:你这节课有何收获?
6、作业
学生做调查后算一算那种方法更合理。
教学反思
这节课挺实用的所以教学效果教好。
课题 百分数的应用(四)的练习课第8课时(总第21课时)
分数的应用教案篇2
学情分析:
学生在五年级下学期已经学习了百分数的意义和读写、百分数和分数、小数的互化,并学会简单运用百分数的意决一些生活中的问题,使学生进一步体会百分数的意义,也为后续学习比较复杂的百分数问题打基础。
教学内容:
北师大版教材六年级数学上册第二单元第一小节的内容
百分数的应用(一)求一个数比另一个数多或少百分之几,是在学生五年级下册已学习了百分数的意义和读写、百分数和分数、小数的互化,并学会简单运用百分数的意决一些生活中的问题,是在此基础上展开的,求一个数比另一个数多或少百分之几的问题,实际上还是求一个数是另一个数的百分之几问题的发展,只不过一个量题目中没有直接给出。通过解决此类问题使学生进一步体会百分数的意义,也为后续学习比较复杂的百分数问题打基础。
教学目标:
1、知识与技能:在具体情境中理解“增加百分之几”或“减少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。
2、过程与方法:能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
3、情感态度与价值观:培养学生运用数学知识解释生活的能力,激发数学学习的兴趣。
重点难点:
1、在具体情境中理解“增加百分之几”或“少百分之几”的意义,学会用线段图分析数量关系,帮助学生加深对百分数意义的理解。
2、能计算出实际问题中“增加百分之几”或“少百分之几”,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
设计理念:
“学生能尝试,尝试能成功。”本节课采用五步六环节的尝试教学法,始终坚持先练后讲,先试后导,先学后教的理念,尊重学生已有的知识水平。在此基础上借鉴课堂实录中的一些设计把学生想要学的想要理解的全部交待清楚了。
教学过程:
一、基本训练.
1、先找出单位“1”的量,再填空。
(1)现价是原价的百分之几?
用()÷()
(2)实际产量是计划产量的120%。
实际产量比计划产量多()%
(3)红花朵数是黄花朵数的80%
红花朵数比黄花少()%
2、思考下面的问题
甲数是5,乙数是4
(1)甲数是乙数的几分之几?
(2)甲数是乙数的百分之几?
(3)乙数是甲数的几分之几?
(4)乙数是甲数的百分之几?
(5)甲数比乙数多几分之几?
(6)乙数比甲数少几分之几?
3、说说下面这些百分数表示什么意思
(1)甲队比乙队多修25%
(2)今年比去年多植树30%
(3)现价比原价减少了20%
(4)红花朵数比黄花少17%
设计意图:前两道是基本训练题,是为本课新知识的顺利展开扫清障碍,而第三题“说说百分数表示的意思”是一道为新课展开做迁移的准备题,本题在我模仿的视频中本来是一道巩固练习题,为了帮助学生理解多百分之几或少百分之几的意义,进而尝试时取得成功,我设计为准备题。
二、导入新课
师:今天这节课就让我们一起来学习有关百分数的应用(一),即求“一个数比另一个数多或少百分之几”的问题。(教师板书课题)
师:通过本节课的学习,同学们要掌握求求“一个数比另一个数多或少百分之几”问题的计算方法。
?设计意图:开门见山直接导入新课,及早出示课题,使学生有了注意方向,从而提高了课堂效率。】
三、进行新课
1、出示尝试题
六(2)班有男生10人,女生15人,女生比男生多百分之几?
请学生试着解答,教师巡视
2、自学课本
师:请同学们打开课本23页,边读边思考,回答自学提示里面的4个问题。
[自学提示]
仔细阅读课本第23页,回答下面的问题。
1、例题给我们提供了哪些信息?要解决什么问题?
2、“增加百分之几”是什么意思?
3、计算一个数比另一个数增加(多)百分之几的问题,书中有几种解答方法?思路各是怎样的呢?
4、比较这两种算法,你喜欢哪种?为什么?
要求:先独立思考,不懂的可以在小组内讨论交流。
生:一边读书一边思考问题。遇到不懂的问题在小组内交流。
?设计意图:让学生通过自学提示的帮助来自学课本,使学生从课本中初步获取知识具有实效性。】
3、再次尝试
盒子里有50立方厘米的冰,化成水后,水的体积约为45立方厘米。水的体积比原来冰的体积减少了百分之几?
4、学生讨论
师:解决“一个数比另一个数多或少百分之几”的问题一般有几种解法?
生:两种
师:第1种算法是怎样的?
生:找准单位“1”的量后,先求出多或少的部分,再用多或少的部分除以单位“1”就可以了。
师:那第2种算法呢?
生:先用一个数除以单位“1”
的数,再同单位“1”比较。
5、教师讲解
师:从上面的算法看出,求一个数比另一个数多或少百分之几”的问题先要找准单位“1”
一般有两种解法。第1种解法是先求出多或少的部分,再用多或少的部分除以单位“1”的量就可以了。第2种算法是如果比单位“1”多的时候就用一个数除以另一个数减1;如果比单位1少的时候就用1减一个数除以另一个数的商。
注意:计算中遇到除不尽时,一般保留三位小数。(百分号前面的数保留一位小数)
四、巩固练习
1、五(1)班有女生20人,男生25人,女生人数比男生少百分之几?
2、电饭煲原价220元,现价160元,电饭褒的价格降低了百分之几?(百分号前保留一位小数)
3、光明村今年每户拥有彩电121台,比去年增加66台,去年每百户拥有彩电多少台?今年比去年增长了百份之几?
五、课堂作业
课本第24页“练一练”第2、4题
学有余力的同学完成本题
光明村今年每户拥有彩电121台,比去年增加66台,
1、今年是去年的百分之几?
2、去年是今年的百分之几?
3、今年比去年增长百分之几?
4、去年比今年减少百分之几?
六、课堂小结
通过今天的学习,你有哪些收获?
分数的应用教案篇3
教学目标
1、使学生较熟练地掌握求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这两类应用题。
2、提高学生分析、解答应用题的能力,培养学生对立统一的辩证思想。
教学重点和难点
找准量和率之间的对应关系是教学中的重点;能够画出较复杂应用题的线段图是教学中的难点。
教学过程设计
(一)复习基础知识
教师谈话:我们已经复习了求一个数是另一个数的几分之几(百分之几)、求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这三类应用题。这节课,我们在前两节课的基础上,继续复习分数、百分数应用题。(板书:分数,百分数应用题复习)
投影出示如下习题:
1、读题列式并按要求改编题:
①一本书100页,读了60页,读了这本书的`几分之几?
学生读题:
如果把问题改成读了百分之几应如何解答?
样列式计算?
③如果把一本书的页数当成问题,如何编题?怎样列式计算?(板
2、补充问题。
(1)六一班有男生30人,女生20人,_______________?
可以求什么?从最基本的想起。
学生读题后补充问题并列式:
①女生是男生的几分之几(百分之几?)
②女生比男生少几分之几(百分之几?)
③男生是女生的几分之几(百分之几?)
④男生比女生多几分之几(百分之几?)
可以求什么?从最基本的想起,
学生读题后补充问题并列式:
①女生有多少人?
②全班共有多少人?
③男生比女生多多少人?
④女生比男生少多少人?
3、回答问题。
师述:大家做一个比赛,看谁想得多?(学生自己在本上独立完成。)
③甲是甲乙差的4倍。
⑤乙是单位1。
4、小结。
通过刚才的练习,我们复习了分数、百分数的哪些类型应用题?它们各自的解法是什么?
(二)画线段图分析解答
投影出示如下练习:
1、录音机每台降价30%后,售价350元,这种录音机原来售价多少元?
①学生读题;
②学生自己画图列式;
③订正画图;
④指名列式。为什么不是350(1-30%)?
⑤那为什么也不是35030%?
2、修一条路,第一天修了全长的20%,第二天修了200m,第三天修的是前两天的总和,这条路全长多少米?
3、一根绳子截去20%后,再接上6m,结果比原来的绳子长了30%。这根绳子原来长多少米?
指名学生到黑板上画图。
4、一根绳子截去20%后,再接上6m,结果比原来的绳子长了1.5m,这根绳子原来长多少米?
(三)综合练习
1、题组训练(只列式不计算)
共多少吨?
箱重量正好相等,原来两箱桔子各有多少千克?
老师用投影出示下图帮助学生理理解题意。
学生课后完成。
课堂教学设计说明
本节课教学可分为三部分。
第一部分,复习求一个数是另一个数的几分之几(百分之几),求一个数的几分之几(百分之几)是多少和已知一个数的几分之几(百分之几)是多少,求这个数这一类应用题。通过补充问题这种方式,使学生能够把分数、百分数应用题的数量关系和解题方法进行复习,并且打开解应用题的思路,充分调动学生的积极性。
第二部分是画线段图分析应用题。这部分的应用题具有典型性,要求学生能够画图进行分析,通过线段图找准量和率的对应关系,能够顺利地解决分数、百分数应用题。
第三部分是深入理解三种应用题的解题思想,综合应用知识。这部分应用题比较难,主要是为了让学生能够综合应用所学过的知识,进一步提高学生的解题能力,让学有余力的学生有发散思维的机会,调动他们的积极性。
板书设计
分数的应用教案篇4
教学目标
1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。
教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学过程设计
(一)复习准备
1.解答“一个数是另一个数的百分之几”用什么方法?(用除法) 2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。) 3.口答,只列式不计算。(用投影出示)
(1)5是4的百分之几?4是5的百分之几?
(2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?
(3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的数是甲数的百分之几?
4.板书应用题。
一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量?
你是从哪句话中找出来的?应怎样列式呢?
如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题
(二)学习新课
1.出示例3。
例3一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
(1)学生默读题。
(2)例3与复习题4比较,有什么异同?
(两道题条件相同,问题不同。)
问题不同在哪儿?
(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)
教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的?
教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。
(意思是:实际造林比原计划多的公顷数是原计划的.百分之几?)板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式?
板书:多的÷计划的
(6)怎样列式计算呢?
板书:
(14-12)÷12
=2÷12
≈0.167
=16.7%
答:实际造林比原计划多16.7%。
问:14-12是在求什么?
问:为什么除以12,而不除以14呢?
(7)还有其它的解法吗?(学生讨论)
汇报讨论结果:
板书:
14÷12-1
≈1.167-1
=0.167
=16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么?
2.把例3中的问题改为“原计划造林比实际造林少百分之几?”
问:你怎样理解“原计划造林比实际造林少百分之几”这句话的?
问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达?
板书:少的÷实际的
问:怎样列式计算?
投影订正:
(14-12)÷14
=2÷14
≈0.143
=14.3%
答:原计划造林比实际造林少14.3%。
问:14-12得到什么?为什么再除以14呢?
问:还有不同的解法吗?
板书:1-12÷14
问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。) 3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。
(2)指名说解题思路。
(3)板书算式:
多的公顷数÷计划的
2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)
4.把3题的问题稍作改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。
(2)说解题思路。
板书:少的÷实际的
2÷(12+2)
(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
1.分析下面每个问题的含义,然后列出文字表达式。
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)1999年电视机的价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)第二季度的产值比第一季度提高了百分之几?
(7)十一月份比十月份超额完成了百分之几?
(8)男生人数比女生人数多百分之几?
2.在练习本上只列式不计算。(投影出示)
(1)某校有男生500人,女生450人。男生比女生多百分之几?
(2)某校有男生500人,女生450人。女生比男生少百分之几?
(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?
(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?
3.判断题。
男生比女生多20%,女生就比男生少20%。( )
课堂教学设计说明
本节课是在学生学习了一个数是另一个数的百分之几的基础上进行的。教学时抓住这一知识的连接点以旧引新,使学生很自然地由旧知识过渡到新知识。两个知识点连成一线,融会贯通。在新课教学中引导学生思考求比一个数多(或少)百分之几的题的解题思路,培养学生的分析能力。在教学方法上采取一题多变的方法,让学生在比较、区别中理解数量之间的关系,提高学生的辨别能力和思维水平。
分数的应用教案篇5
重点:
1.理解和掌握求一个数的几分之几是多少的分数应用题的结构和解题方法。
2.渗透对应思想。
难点:
1.理解这类应用题的解题方法。
2.用线段图表示分数应用题的数量关系。
教学过程:
一、复习、质疑、引新
1.说出、、米的意义。
2.列式计算:
20的是多少?6的是多少?
学生完成后,可请同学说一说这两个题为什么用乘法计算?
3.谈话:同学们,我们知道,已知一个数求它的几分之几是多少,用乘法计算。这是乘法意义的扩展出现的新问题,那么这一意义还可以解决什么问题呢?今天我们就来一起研究(祟课题、分数应用题)
二、探索、质疑、悟理
1.出示例1(也可以结合学生的实际自编)
学校买来100千克白菜,吃了,吃了多少千克?
①读题。理解题意,知道题中已知条件和所求问题;搞清数量间的关系。
②分析。重点分析哪句话呢?吃了这句话是分率句。是什么意思呢?(就是把100千克白菜平均分成5份,吃了这样的4份)。
③画图:(课件一演示)补:把100千克当做什么?(单位1)
画图说明:
a.量在下,率在上,先画单位1
b.十份以里分份,十份以上画示意图。
c.画图用尺子,用铅笔。
④尝试。根据同学们对题目的理解,利用已有的旧知识,让学生独立思考,试着列式解答。也可以同桌讨论,互相启发。
学生可能会出现下面解答方法:
解法一:用自己学过的整数乘法做
(千克)
解法二:(千克)
在充分研究基础上,教师可将两种解法分别写在黑板上,并请同学讲出算理和思路。解法一是根据分数意义,把100平均分成5份,吃了这样的4份,所以先求1份,用除法,再求几份,用乘法,是以前学过的归一问题。解法二是根据分数乘法的意义,吃了,是吃了100千克的,所以把100千克看作单位1,要求吃了多少,就是求100的是多少,根据一个数乘以分数的意义,所以用乘法计算。
⑤小结:知道一个数是多少,求它的几分之几是多少,像这样的应用题,就可以根据分数乘法的意义用乘法解答。
2.巩固练习
六年级一班有学生44人,参加合唱队的占全班学生的,参加合唱队有多少人?
订正时候强调1)把哪个数量看作单位1?
2)为什么用乘法计算?
3.学习例2
例2小林身高米,小强身高是小林的,小强身高多少米?
在学习例1的基础上,可以让学生审题后,试着画线段图表示数量关系。
(课件二演示)
先画单位1
再画单位1的几分之几
画图时注意与例1的区别。(例1是部分与整体的关系,画一条线段表示数量关系数,例2是甲乙两类关系,画两条线段表示数量关系为好。)
在学生分析比较数量关系的基础上,请同学指出问题就是求米的是多少?
列式:(米)
答:小强身高米。
4.改变例2
改变例2的条件和问题成为下题(可让学生完成)。
小强身高米,小林身高是小强的倍,小林身高多少米?
改编后,可让学生独立画图完成。
(米)
三、归纳、总结
1.今天所学题目为什么用乘法计算
2.用分数乘法解答的题的条件和问题上有什么共同的特点?从哪里入手分析?(都是已知一个数(即单位1)是多少,还知道它的几分之几(分率),求它的几分之几是多少。从分率可入手分析)
四、训练、深化
1.先分析数量关系,再列式解答
①一只鸭重千克,一只鸡的重量是鸭的,这只鸡重多少千克?
②一个排球定价36元,一个篮球的价格是一个排球的,一个蓝球多少元?
2.提高题
①一桶油400千克,用去,用去多少千克?还剩多少千克?
②一桶油400千克,用去吨,用去多少千克?还剩多少千克?
五、课后作业:练习五1、2、3
六、板书设计:
分数乘法应用题
100==80(千克)
答:吃了80千克。
(米)
答:小强身高是米。
分数的应用教案篇6
教学目标
1.使学生了解一些有关保险的简单知识,知道保险金额、保险费率和保险费的含义,会根据保险费的计算公式进行简单的计算。
2.介绍一些有关税收的知识,向学生进行公民应依法纳税的。
3.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
教学重点和难点
理解保险金额、保险费率和保险费三者之间的关系。
教学过程设计
(一)复习准备
1.甲数是12,乙数是15。甲数是乙数的百分之几?乙数是甲数的百分之几?
2.甲数是120,它的75%是多少?
3.( )与( )的比率叫做利率。
4.利息=( )×( )×( )
师述:前几天我们学习了有关储蓄的知识,今天我们来学习有关保险和税收的知识。
板书:百分数应用题
(二)学习新课
1.导入。
师述:为了减少企业、个人财产和生命遇到灾害时所受的损失,中国人民保险公司开办了各种保险业务。在一定时期内,参加保险的企业或个人向保险公司交纳一定数量的保险费,如果财产或人身受到自然灾害(如洪水,干旱等)或意外事故,造成损失,保险公司就负责按照预先的规定给予赔偿。
板书:交到保险公司的钱叫保险费。
师述:参加保险的财产价值称为保险金额。
板书:保险金额
师述:保险费是由保险金额乘以保险费率得到的。保险费率和银行利率一样,是由保险公司确定。
板书:保险费率
板书:保险费=保险金额×保险费率
2.出示例3。
例3林海家参加了中国人民保险公司的家庭财产保险,参加保险的财产价值是9800元。如果每年的保险费率是0.3%,林海家每年应付保险费多少元?
(1)学生读题。
(2)问:这道题求什么?
(3)问:怎样计算保险费?
板书:9800×0.3%=9800×0.003=29.4(元)
答:林海家每年应付保险费29.4元。
追问:为什么用9800×0.3%,而不是用9800÷0.3%?
3.练习。
赵华家今年参加家庭财产保险,保险金额是8000元,保险费率是0.3%。需交保险费多少元?
4.税收的意义。
师述:税收是国家财政收入的主要________,税收取之于民,用之于民。根据《中华人民共和国个人所得税法》规定,我国公民有依法纳税的义务。
在税法中规定:每月收入不高于800元的,免缴个人所得税;月收入超过800元的,每月收入扣除800元后的余额部分,分九级按5%~45%的比例缴纳个人所得税(如月收入超过800元而又不高于1300元的',扣除800元后的余额部分应按5%的税率缴纳个人所得税)。
5.出示例4。
例4张文父亲的月工资是1000元。按个人所得税法规定,每月工资收入扣除800元后的余额部分,按5%的比例缴纳个人所得税。张文的父亲每月应缴纳个人所得税多少元?
(1)学生默读题。
(2)问:每月工资收入扣除800元后的余额部分,指的是什么?
(3)指名说思路。
(4)应怎样列式计算。
板书:(1000-800)×5%
=200×5%
=10(元)答:张文的父亲每月应缴纳个人所得税10元。
6.练习。
歌舞团演员王华参加一场演出,取得收入3000元。按个人所得税法规定,演出收入扣除800元后的余额部分,按20%的比例缴纳个人所得税。此次演出后,王华应缴纳个人所得税多少元?
7.课堂小结。
今天我们学习了哪些知识?
师述:今天我们学习了有关保险和税收的知识。知道了怎样来计算保险费和应纳个人所得税的方法,还知道了这两种类型题实际上就是求一个数的百分之几是多少。
(三)巩固反馈
1.填空:
保险费=( )×( )
保险费率=( )÷( )
2.八一小学为117名老师投了家庭财产保险,每家保险的金额定为8000元。如果按每年交纳0.3%的保险费率来交保险费,学校一年为老师交纳保险费多少元?
3.一个图书馆对325万元的图书进行了防火保险。如果每年的保险费是1300元,那么防火保险的保险费率是多少?
4.一个事业单位的全体职工去年参加了团体人身意外伤害保险。每年的保险费率是0.2%,每人的保险金额都是5000元,这个单位去年向保险公司交纳了1200元保险费。这个单位共有职工多少人?
5.小霞母亲的月工资是1200元。按个人所得税法规定,每月工资收入扣除800元后的余额部分,按5%的比例缴纳个人所得税。小霞的母亲每月应缴纳个人所得税多少元?
6.东路小学600名学生去年都参加了平安保险,每人保险金额是8000元,保险费率是0.1%。结果去年有两名学生意外受伤,每人得到赔款1200元。这些赔款占全校交纳保险费总额的百分之几?
课堂教学设计说明
本节课从概念入手,给学生讲清了有关保险和税收的意义以及计算方法。对学生进行了自我保护和遵守国家法律的。由于学生对求一个数的百分之几是多少和求一个数是另一个数的百分之多少已经比较熟练,故在课堂中讲解的较少,着手于对题型的认识和分析解题思路,以便发展学生的思维灵活性和对应用题的分析、比较、解答的能力。
板书设计
分数的应用教案6篇相关文章:
 
                             
                             
                             
                            