圆锥体积教案7篇

时间:
Anonyme
分享
下载本文

教案应当充分考虑学生的学习背景和经验,写教案要注重课堂的互动和学生的参与,创设积极的学习氛围和环境,一团范文网小编今天就为您带来了圆锥体积教案7篇,相信一定会对你有所帮助。

圆锥体积教案7篇

圆锥体积教案篇1

教学目标

1、推导出圆锥体积的计算公式。

2、会运用圆锥的体积公式计算圆锥的体积。

重点难点

圆锥体积公式的推导过程。

教学过程

一、板书课题

师:同学们,今天我们来学习“圆锥的体积”(板书课题)。

二、出示目标

理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。

三、自学指导

认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。想:

1、圆锥的体积与圆柱的体积有什么关系?

2、圆锥的体积计算公式是什么?用字母如何表示?

5分钟后,比谁能正确地回答思考题并能做对检测题!

检测题

完成课本第34页“做一做”第1、2题。

小组合作,校正答案

后教

口答

一个体积是1413立方分米的铁块,可以制造成多少个底面半径是3分米、高是5分米的圆锥形零件?

小组内互相说。

当堂训练

1、必做题:

课本第35页第5、6、7题。(做在作业本上)

2、选做题:

有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)

圆锥体积教案篇2

教学内容:教科书第52页练习十二的第69题。

教学目的:通过练习,使学生进一步熟悉圆锥的体积计算。

教学过程:

一、复习

1.圆锥的体积公式是什么?

2.填空。

(1)一个圆锥的体积是与它等底等高的圆柱体积的

(2)圆柱的体积相当于和它等底等高的圆锥体积的()倍。

(3)把一个圆柱削成一个最大的圆锥,削去部分的体积相当于圆柱的,相当于圆锥的()倍。

二、课堂练习

1.做练习十二的第6题。

教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积:

让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出几种行之有效的测量方法。例如,要求一个圆锥物体的体积,可以先用软尺量出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板测量出圆锥的高,这样就可以求出圆锥的体积。

2.做练习十二的第7题。

读题后,教师可以先后提问:

这道题已知什么?求什么?

要求这堆沙的重量,应该先求什么?怎样求?

指名学生回答后,让学生做在练习本上,做完后集体订正。

3.做练习十二的第8题。

读题后,教师可提出以下问题:

这道题要求的是什么?

要求这段钢材重多少千克,应该先求什么?怎样求?

能直接利用题目中的数值进行计算吗?为什么?

题目中的单位不统一,应该怎样统一?

分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。

4.做练习十二的第9题。

读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?

要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。

让学生独立做在练习本上,做完后集体订正。

三、选做题

让学有余力的学生做练习十二的第10、11、12题。

1.练习十二的第10题。

教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底面周长和高。请大家想一想,应该怎样求出底面积?

引导学生利用c=2r可以得到r=。再利用sr,就可以求得s=()。再利用圆锥的体积公式就可以求出其体积。

2.练习十二的第11题。

这是一道有关圆柱、圆锥体积的比例应用题。

可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。

设圆柱的高为x厘米。

=x=9.6

(注意:由于圆锥和圆柱的底面积s都相等,所以计算中可以先把s约去。)

3.练习十二的第12题。

这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。

圆锥体积教案篇3

教学要求:

l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

3.培养学生初步的空间观念和发展学生的思维能力。

教具准备:长方体、正方体、圆柱体等,根据教材第14页练一练第1题自制的圆锥,演示测高、等底、等高的教具

演示得出圆锥体积等于等底等高圆柱体积的 的教具。

教学重点:掌握圆锥的特征。

教学难点:理解和掌握圆锥体积的计算公式。

教学过程:

一、复习引新

1. 说出圆柱的体积计算公式。

2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。

这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

二、教学新课

1.认识圆锥。

我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

(1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。

(2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

4.学生练习。

5.教学圆锥高的测量方法。(见课本第13页有关内容)

6.让学生根据上述方法测量自制圆锥的高。

7.实验操作、推导圆锥体积计算公式。

(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)

(2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

(3)实验操作,发现规律。

在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看

你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验

得出只有等底等高的圆锥才是圆柱体积的 。

(5)启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积

=底面积高

用字母表示:v= sh

(6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 ?

8.教学例l

(1)出示例1

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、巩固练习

1.做练一练第2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以 。

2.做练习三第2题。

学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

3.做练习三第3题。

让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。

四、课堂小结

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

五、课堂作业

练习三第4、5题。

圆锥体积教案篇4

教学目标:

1、通过动手操作实验,推导出圆锥体体积的计算公式。

2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

教学过程设计:

一、复习旧知,做好铺垫。

1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)

2、口算下列圆柱的体积。

(1)底面积是5平方厘米,高6厘米,体积=?

(2)底面半径是2分米,高10分米,体积=?

(3)底面直径是6分米,高10分米,体积=?

3、认识圆锥(课件演示),并说出有什么特征?

二、沟通知识、探索新知。

教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)

1、探讨圆锥的体积计算公式。

教师:怎样推导圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积计算公式的?

学生回答,教师板书:

圆柱------(转化)------长方体

圆柱体积计算公式--------(推导)长方体体积计算公式

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)

(学生得出:底面积相等,高也相等。)

教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底等高)

(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?

(不行,因为圆锥体的体积小)

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验,并借助课件演示。

(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)

a、谁来汇报一下,你们组是怎样做实验的?

b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)

教师:同学们得出这个结论非常重要,其他组也是这样的吗?

学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

(板书圆锥体体积计算公式)

教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)

(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

(教师给体积公式与“等底等高”四个字上连线。)

进一步完善体积计算公式:

圆锥的体积=等底等高的圆柱体体积×1/3

=底面积×高×1/3

v=1/3sh

教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

课件出示:

想一想,讨论一下:

(1)通过刚才的实验,你发现了什么?

(2)要求圆锥的体积必须知道什么?

学生后讨论回答。

三、应用求体积、解决问题。

1、口答。

(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

2、出示例题,学生读题,理解题意,自己解决问题。

例1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

a、学生完成后,进行小组交流。

b、你是怎样想的和怎样解决问题的。(提问学生多人)

c、教师板书:

1/3×19×12=76(立方厘米)

答:它的体积是76立方厘米

3、练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

4、出示例2:要求学生自己读题,理解题意。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

(1)提问:从题目中你知道了什么?

(2)学生独立完成后教师提问,并回答学生的质疑:

3.14×(4÷2)2×1.2×1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?

5、比较:例1和例2有什么不同的地方?

(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;

(2)例1是直接求体积,例2是求出体积后再求重量。

圆锥体积教案篇5

一、教材分析

圆锥的体积这部分教学内容是属于小学数学空间与图形的领域.这部分内容的教学是在圆柱体体积教学的基础上进行的,教学时应加强学生动手操作、观察等活动让学习经历探索知识的过程,培养学生自主解决问题的能力,从而加强学生对所学知识的深刻理解.本节课的内容对今后学生学习立体图形有着重要的作用.

二、教学过程

(一)引出课题

1、师:同学们,看一看祝老师手中拿的是什么?

生:这是一个圆锥体.

2、师:你们能不能用以前的办法求出这个圆锥体的体积呢?

生:可以,我们可以用排水法来求出它的体积.

师:如果是一个很大的一个圆锥体还用这种办法,会怎样?

生:能求出来但会很麻烦.

师:很好.那么我们今天就共同研究求圆锥体体积的办法.(板书课题)

(二)实验探究推导公式

1、师:同学们,想求圆锥体的体积它会与哪些图形有关呢?

生:圆柱体

2、师:请同学们拿出学具,选择能够推导出圆锥体体积公式的学具并把你们的发现记录下来.(小组合作)

学生汇报:我们组选择一个圆锥体、一个圆柱体和一些水进行实验.我们发现圆柱体的体积是圆锥体体积的5倍多一些.

师:其他种和他们一样吗?

生:不一样.

师:谁还愿意汇报.

生:我们小组选择了一个等底等高的圆锥体、圆柱体和一些大米进行实验我们发现圆柱体的体积是圆锥体体积的3倍.

生汇报:我们小组也选择了等底等高的圆锥体圆柱体和一些细沙进行实验.我们把细沙装满圆锥体后倒入和它等底等高的圆柱体内,正好倒了三次没有剩余.我们得出圆柱体的体积是圆锥体体积的3倍

2、师:为什么你们在实验的时候都用圆锥体和圆柱体,得到的是两种不同的结论呢?

生:因为第一组用的不是等底等高的圆柱体和圆锥体所以得到的结论和我们两组不同。

3、师:只有在等底等高的前提下,圆柱体和圆锥体的体积存在这样的关系。即圆锥体的体积等于圆柱体体积的三分之一。如果用字母V来表示圆锥体的体积,s表示它的底面积,h表示它的高。V=1/3sh。

(三)巩固练习

1、判断

(1)圆柱体的体积是圆锥体体积的3倍。 ( )

(2)圆柱体的体积大于与它等底等高的圆锥体的体积。 ( )

(3)圆锥体的高是圆柱体的高的3倍,它们的体积相同。 ( )

2、解决问题

(1)有一个圆柱体它的体积是36立方厘米,与它等底等高的圆锥体是多少?

(2)有一个圆锥体沙堆,底面积是18平方米,高6米求沙堆的体积?

(3)一个圆锥体的体积是30立方分米,底面积是20平方分米,求它的高是多少分米?

三、教学反思

这节课上,我以高昂的激情,丰富的执教经验,幽默风趣的语言,充分调动了学生的学习情趣,学生的学习积极性得到了充分的发挥。真不失为一节让人回味的好课。

1、难点分散。

针对学生对圆锥体刚刚有了初步的认识,又有了对圆柱体体积的计算的基础,对圆锥体的体积的计算没有充分的认识。教者采用了直观的导入:出示一个圆锥体,提问:“你认识这个物体吗?谁能用以前的学习方法,求出它的体积?”学生回答后。教者紧接又发问:“如果是较大的物体怎么办?”一石激起千层浪,引人入胜的问话,强烈的激起了学生的求知欲,学生进入了学习的最佳境界。

2、导入的新颖。

情境的创设使学生进入了有序的思维境地,教者将问题抛给了学生,放手让学生用手中的学具自主地实验。在实验中发现、在发现中探索、在探索中交流,给学生的思维发展创设了空间,学生的观点和意见得以自由的发表。教师的适时的点拨,解决了这节课的难点,即:必须是等底等高的圆锥和圆柱体,它们的体积关系才存在----等底等高的圆锥体的体积是圆柱体的三分之一。

3、教学手段和练习配套。

教者用考一考、请听题等手段对本节课的内容进行强化。一方面,使学生的情绪围着教者的教学目标转,学生的学习兴趣极高,每个人都能进行有效的思维;另一方面,从学生的认知过程看,符合了直观——抽象——概括的认知过程,按照学生的认知规律组织教学。

4、学生一直处在积极的学习状态中,整个教学过程注重了学生参与学习的积极性,让学生重参与公式的推导过程而不是结论,每个学生的学习兴趣的调动是这节课的一个亮点。学生始终处在思维十分活跃的状态中,高潮迭起,一波连着一波,让人体会到了新课标下的新课堂的教学魅力。教者的教学魅力尽现于此,得到了淋漓尽致的发挥。

圆锥体积教案篇6

教学目标

1.在操作和探究中理解并掌握圆锥的体积计算公式。

2.引导学生探究、发现,培养学生的观察、归纳等能力。

3.在实验中,培养学生的数学兴趣,发展学生的空间观念。

教学过程

一、圆锥体积的计算公式的推导过程。

圆锥体积计算公式的理解。

小黑板、等底等高的圆柱和圆锥、圆柱形水槽、河沙或水。一、情景铺垫,引入课题

教师出示小黑板画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16cm2,高60cm,单价:40元/个。

屏幕上出示问题:到底选哪种蛋糕划算呢?

教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?

教师抽学生回答问题。

可能会出现以下几种情形:

第一种学生会认为买圆柱形的蛋糕比较划算,理由是这种蛋糕比圆锥形蛋糕的个大。

第二种学生会认为买圆锥形的蛋糕比较划算,理由是这种蛋糕比圆柱形蛋糕高。

第三种学生会认为不能确定,理由是不知道谁的体积大,无法比较。

教师:看来要帮助这两个同学不是一件容易的事情,解决这个问题的关键在哪里?

学生明白首先要求出圆锥形蛋糕的体积。

教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。

揭示课题。板书课题:圆锥的体积

二、自主探究,感悟新知

1.提出猜想,大胆质疑

教师:谁来猜猜圆锥的体积怎么算?

学生猜测:圆柱和圆锥的底面都是圆的,它们之间可能有联系,可不可以把圆锥变成圆柱,求出圆柱的体积,从而得出圆锥的体积……

对学生的各种猜想,教师给予肯定和表扬。

2.分组合作,动手实验

教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。

教师布置任务并提出要求。

每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。

学生小组合作探究,教师巡视指导,参与学生的活动。

3.教师用投影仪展示实验报告单

圆锥的体积实验报告单

第()小组记录人:

名称底面半径最初水面高度最后水面高度水面上升高度体积

圆柱

圆锥

结论

反馈信息。各小组交流实验方法和结果。

教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?

方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=13×圆柱的体积。

方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的体积也是这个等底等高圆柱体积的三分之一。

方案三:我们组与前两小组的方法不一样。我们是用两个同样大的水槽装同样多的水,在水面的位置分别作好标记,然后把这两个实心的圆柱和圆锥分别放入两个水槽中,在升高后的水面分别作好标记,算出两个水槽水面上升的高度,发现放圆柱形水槽的水面上升的高度是放圆锥形水槽水面高度的三倍。因为两个水槽底面一样大也就是底面积相等,由圆柱的体积计算公式算出两个水槽中水的体积,发现圆锥的体积是圆柱的体积的三分之一。因此我们组得出的结论是:圆锥的体积是与它等底等高圆柱体积的三分之一。

教师:三个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。

教师把学生们的实验过程用小黑板演示一遍,让学生再经历一次圆锥体积的探究过程。

4.公式推导

教师:圆柱的体积怎样计算?圆锥的体积又怎样计算?

教师引导学生理解只要求出与这个圆锥等底等高的圆柱的体积,再乘以三分之一,就得到圆锥的体积。

板书:圆柱的体积=底面积×高

v=s×h

↓〖4↓〖6↓

圆锥的体积=13×底面积×高

v=13×s×h

教师:圆柱的体积用字母v表示,圆锥的体积也用字母v表示。怎样用字母表示圆锥的体积公式?

抽学生回答,教师板书:v=13sh

教师引导学生理解公式,弄清公式中的s表示什么,h表示什么。

要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。

5.拓展

教师:是不是底和高不相等的圆锥体积也是圆柱体积的三分之一呢?我们来做个实验。

教师利用学生的实验器材进行演示。

用两个等底不等高的圆柱和圆锥装水;再用两个等高不等底的圆柱和圆锥装水,两次结果都没得到圆锥体积是圆柱体积的三分之一,进一步让学生体会等底等高的含义。

6.运用所学知识解决问题

教学例1。

一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?

学生读题,找出题中的条件和问题。

引导学生弄清铅锤的形状是圆锥形。

学生独立解答。抽学生上台展示解答情况并说出思考过程。

三、拓展应用,巩固新知

1.教科书第42页第1题

学生独立解答,集体订正。

2.填一填

(1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。

(2)等底等高的圆柱的体积是圆锥体积的()倍。

抽生回答,熟悉圆锥的体积计算公式。

3.把下列表格补充完整

形状底面积s(m2)高h(m)体积v(m3)

圆锥159

圆柱160.6

学生在解答时,教师巡视指导。

4.教科书第42页练习九第2题

分组解答,抽生板算。教师带领学生集体订正。

5.应用公式解决实际问题

教师:现在我们再来帮助这两个同学解决他们的难题。

要求学生独立解答新课前买蛋糕的问题。

抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。

教师引导学生明白生活中的许多现象中都藏着数学问题,只要留心观察就能得出结论。这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?

圆锥体积教案篇7

一.教材依据

本节课所讲的《圆锥的体积》是九年义务教育人教实验版,第十二册第二章第二节的内容。

二.设计思想

为了落实素质教育,积极推进新改革,充分发挥学生的主体作用,甘做学生的朋友,引导其积极主动地进行探究性学习。通过“小组活动”、“合作探究”全面调动每一位学生的学习积极性和参与性。通过学生的自主学习、互助学习,自主探究所学的内容,完全改变过去被动的“填鸭式”的教学模式,切实提高课堂效率。

本节教材我想通过向等底等高的圆柱和圆锥中倒水或沙的实验,得到圆锥体积的计算公式v=1/3sh.即就是等底等高的圆锥体积是圆柱体积的三分之一。例2是已知圆锥形沙堆的底面直径和高,求沙子的体积。这是一个简单的实际问题,通过这个例子教学使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。前面学生对圆锥、圆柱立体图形的特征已进行了学习,对其特征也有了较深刻的认识,可以熟练地计算圆柱的体积、表面积、侧面积。这是学习本节课的基础。

三.教学目标

知 识 技能:理解并掌握圆锥体积的计算方法,能运用公式解决

简单的实际问题。

过程与方法:在实践操作中掌握圆锥体积公式的推导。

情 感 态度:培养学生乐于学习,热爱生活,勇于探索的精神。

四.教学重点

进一步理解圆锥的体积公式,能运用公式进行计算,能解决

简单的实际问题。

五.教学难点:圆锥体积公式的推导。

六、教法选择

利用多媒体、观察法、实验法、师生互动启发式教学

七、学法指导

观察实验 —合作探究—达标反馈— 归纳总结

八.教学准备

多媒体课件、同样的圆柱形容器若干、与圆柱等底等高的圆锥形容器若干、水和沙土。

九.教学过程

?复习旧知】

1. 课件展示圆柱和圆锥的立体图形,并请学生说出图形各部分的名称。

2. 圆柱的体积公式是什么?

?创设情境,引发猜想】

1.多媒体课件呈现出动画情景故事(配音乐):

盛夏的一天,森林里闷热极了,小动物们热得喘不过气来,都想吃点解暑的东西。漂亮的小白兔去冷饮店买了一块圆柱形的冰麒麟,聪明的狐狸拿着一块圆锥形的冰麒麟想和它交换…… (多媒体课件展示两块冰麒麟等底等高)

2.引导学生围绕问题展开讨论。

问题一:小白兔上当了吗?

问题二:狐狸和小白兔怎样交换才算公平?

3. 导入新课,板书课题:同学们,要解决这些问题我们就来学习《圆锥的体积》这一节课,然后帮帮小白兔好吗?

?自主探索,动手实验】

出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们小组是怎样实验的?

1. 小组实验。按照实验程序要求和注意事项(多媒体课件展示)

每四人为一小组,各小组长带领三个成员动手操作实验,教师在教室巡回指导。

2. 全班交流。

组织收集信息 —— 引导整理信息 —— 参与处理信息

3. 引导反思。实验过程让学生积极发散思维,各抒己见。

4. 公式推导。

全班同学集体观看多媒体课件的实验过程,并结合自己的实验活动试着推导圆锥的体积计算公式。

圆柱的体积等于和它等底等高的圆锥体积的3倍;或者圆锥的体积等于和它等底等高的圆柱体积1/3。

用字母表示为: v=1/3sh

5.思考:如果要计算圆锥的体积,必须知道那些条件?

6.问题解决。

故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(课件出示:等底等高)

?运用公式,解决问题】

例2:建筑工地上有许多沙子,堆起来近似一个圆锥,这堆沙子大约

有多少立方米?(结果保留两位小数)

具体解题过程让同学们自己大显身手,个别学生可以上讲台板演,然后教师作最后讲评。

?练习巩固】课件出示,师生共同完成。

一.判断。

1、圆柱体的体积一定比圆锥体的体积大。 ( )

2、圆锥的体积等于和它等底等高的圆柱体的。 ( ) 3、正方体、长方体、圆锥体的体积都等于底面积×高。( ) 。

4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。( )

二.填表。

已 知 条 件 体积

圆锥底面半径2厘米,高9厘米

圆锥底面直径6厘米,高3厘米

圆锥底面周长6.28分米,高6分米

?拓展延伸】:

有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?

?质疑问难,总结升华】

通过这节课的学习,你们对圆锥的体积有哪些新的认识?请谈谈自己的感想和收获。

?作业布置】

课本25页第3、5、8题

圆锥体积教案7篇相关文章:

扳手指教案7篇

颜色歌教案7篇

燕子课文教案7篇

大班《牙齿》教案7篇

二年级《雷雨》教案7篇

吹风车教案7篇

中班语言领域教案7篇

中班大安全教案7篇

飞机飞教案7篇

月光族教案优质7篇

圆锥体积教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
101742